Research

Projection of drought-flood abrupt alternation in a humid subtropical region under changing climate

Drought-flood abrupt alternation events (DFAAEs) bring about detrimental impacts on economics and environment. Projection of the future change in the DFAAEs is a challenging issue. Incorporated with the datasets of the Coupled Model Intercomparison Project Phase 5 under two Representative Concentration Pathway scenarios (RCP4.5 and RCP8.5), we applied the Soil and Water Assessment Tool model and the drought-flood abrupt alternation index (DFAAI) to detect climate change impacts on the DFAAEs in the Poyang Lake Basin for the period from 2020 to 2099. Our results demonstrated that the projected DFAAEs would become more frequent and be mainly distributed from January to October. Among them, the drought-to-flood events mainly occur from January to July, while the flood-to-drought events mainly occur from July to October. The occurrence of the DFAAEs is more frequent, and the occurrence frequency of DFAAEs under RCP4.5 is 75. The mild DFAAEs would be the dominated events in the Poyang Lake Basin, while the moderate and extreme DFAAEs are spatially unevenly distributed. The annual maximum and minimum of DFAAI would increase, and the frequency and intensity of the DFAAEs tend to increase. The projected runoff tends to increase but spatially homogenous. The projected peak flow would delay leading to a change in the transition time of the DFAAEs' type. This study provides a future projection on DFAAEs, valuable for policy makers to mitigate flood disasters at a basin scale.


 

Rong Wang, Xianghu Li, Qi Zhang, Junxiang Cheng, Jianfeng Li, Dan Zhang, Yuanbo Liu, Projection of drought-flood abrupt alternation in a humid subtropical region under changing climate, Journal of Hydrology, Volume 624, 2023, 129875, https://doi.org/10.1016/j.jhydrol.2023.129875.